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Boolean functions

Boolean variable takes on one of two values (1 or 0)
(= Ising spin)
- A Boolean function is a function of Boolean inputs that yields

a Boolean output (can be defined by specifying output value
for each of the 2N input configurations)

+ There are 22" Boolean functions of N variables
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Classifying Boolean functions gives
insight into difference between “typical”
and “atypical” Boolean functions
A “typical” Boolean function has output values chosen to

be either zero or one independently and randomly for
each input configuration

Almost all Boolean functions are “typical”

But almost all functions cannot be feasibly computed (e.g.,
in time that grows at most polynomially with N).

# of Boolean # of Boolean functions
functions of N oN ANE that can be computed
2 >> 2 with resources bounded
Boolean =
arguments polynomially with N

C.Shannon, Bell System Technical Journal 28, 59-98 (1949)



How to tell if an individual realization is “generic”?

(Note that can convert functions to strings by listing outputs for input
configurations in lexigraphical order)

o 0o 0o o000 000 0 0 0 0 0 O

o1 o0 0/1 1t 0 1 0 O0 1 1 1 0 0 1

These two sequences are equally likely to be found
by selecting values independently and randomly
to be O or 1 with equal probabillity.

But the second sequence is more “typical.”



How does one determine whether or not a
function is typical?

This is a key question in the field of
computational complexity, the study of how
computational resources needed to solve a
problem grow with size of problem specification.
(One way to show a function is not typical is to
display an algorithm for computing it efficiently.)

This talk: Renormalization group (RG)
approach to classifying Boolean functions.



Renormalization group transformations and
phase transitions in condensed matter systems

L. Kadanoff, 1966; K. Wilson, 1970

example: magnet
Ferromagnet: spins aligned

Paramagnet: spins random
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RG: eliminate spins, creating
“effective interactions”
between remaining spins



Renormalization group transformations and
phase transitions in condensed matter systems

L. Kadanoff, 1966; K. Wilson, 1970

example: magnet JTTT U
 anine Al TN T
Ferromagnet: spins aligned SRS
Paramagnet: spins random PTT TN U
RG: eliminate spins, creating (NN

“effective interactions”
between remaining spins



Renormalization group transformations and
phase transitions in condensed matter systems

L. Kadanoff, 1966; K. Wilson, 1970

example: magnet N NN
 anine Al Tty
Ferromagnet: spins aligned RSN
Paramagnet: spins random NP RN
RG: eliminate spins, creating (NN

“effective interactions”
between remaining spins



Renormalization group transformations and
phase transitions in condensed matter systems

L. Kadanoff, 1966; K. Wilson, 1970

example: magnet v N J
Ferromagnet: spins aligned T A T U \Z y
Paramagnet: spins random J N J

RG: eliminate spins, creating NN

new configuration with
(possibly) different “effective
interactions”



Renormalization group transformations and
phase transitions in condensed matter systems

L. Kadanoff, 1966; K. Wilson, 1970

example: magnet
Ferromagnet: spins aligned

Paramagnet: spins random
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RG: eliminate spins, creating
new configuration with
(possibly) different “effective
interactions”



Recall RG transformation applied to individual

configurations of Ising model for a magnet
K.G. Wilson, Scientific American 241 (2) 158 (1979)
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Using the renormalization group to classify
Boolean functions

* Recall that renormalization group
transformations eliminate degrees of freedom

* A transformation that can be applied to any
Boolean function f(x,,X,,...,Xy):

f(X4,Xo,...,XN) = 1(0,X5,...,Xy) @ F(1,X5,...,XN)

transforms function of N variables into one of
N-1 variables

@ = addition modulo 2



RG transformation yields “fixed point”
behavior for generic Boolean functions.

f(X4,Xo,...,XN) = 1(0,X5,...,Xy) @ (1,X5,...,XN)

* Generic Boolean function: for each input
configuration, the output is chosen independently and
randomly to be either 1 or O with equal probability

* Apply RG: each output of every resulting function is
independently and randomly chosen to be 1 or 0

 RG yields a fixed point = there is a “generic phase”



RG maps “typical” Boolean function to another
“typical” Boolean function: fixed point behavior
“typical” function -- output for each input chosen independently

& randomly to be zero or one with equal probability
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RG “flow” in “generic phase”

Start with function in which output value for given
input is 1 with probability p,, and values are chosen
independently and randomly.

= pj+1=2pj(1 —pj) (p;=value of p after j applications of RG)
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“Flow” to generic fixed point upon
application of the RG

e.g., function where output values are independently and
randomly chosen to be one with probability p=0.04

N=14
prob (black)=0.04
frac(black)=0.0402

after 2

renormalizations

N=12

frac(black)=0.141

after 4
renormalizations

N=10
frac(black)=0.388

after 6
renormalizations

N=8
frac(black)=0.473



Some functions are non-generic
(as seen by behavior upon renormalization)

* Polynomials of order &: RG yields zero after £+1
iterations

* Functions of composite variables:

— “are more than half the inputs nonzero?” (majority)

* RG yields a series of functions that are nonzero for a fraction
of inputs «1/VN

— “is number of nonzero inputs divisible by 3?”
 RG is nonzero for 2/3 of inputs (vs 1/2 for generic function)

— Behavior upon renormalization reflects fact that
functions depend on fixed combination of inputs



RG flow for low order polynomials is to
constant, so they are not in generic phase

3rd order polynomial f=a,® 2bx;® 2CiXX;® 2d XXX,

after 4
after 2 renormalizations
. : renormalizations
original function N=10

N=14 N=12



Some other functions do not “flow” to generic
fixed point upon application of the RG

e.d., function whose value is one if the number of nonzero
inputs is divisible by 3

S

after 6

after 4 o
after 2 renormalizations renormalizations
N=14 renormalizations N=10 N=8
fraC(bIaCk)=O_333 N=1 2 fraC(bIaCk)=0.666 fraC(bIaCk)=0.664

frac(black)=0.667



Possible relations between phases
(defined by behavior upon repeated
application of RG transformation) and
computational complexity classes

Computational complexity: study of how
computational resources needed to solve a
problem grow with size of problem specification.



The complexity classes P and NP

P: Problems that can be solved in a number of
steps that grows no faster than polynomially with
the size of the problem specification

NP: Problems for which a solution can be
verified in a number of steps that grows no faster
than polynomially with the size of the problem
specification.

We know that problems in P are easy to solve.

We think that some problems in NP are hard to solve.



Whether or not P is distinct from NP is a key
unanswered guestion in computational
complexity

#— Clay Mathematics Institute
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ABDUT CMI PROGRAMS NEWS & EVENTS AWARDS SCHOLARS PUBLICATIONS

F Birch and Swinnerton-Dyer
Conjecture

Millennium Problems

In order to celebrate mathematics in the new millennium, The Clay * Hodge Conjecture
Mathematics Institute of Cambridge, Massachusetts (CMI) has named seven + Navier-Stokes Equations
Frize Problems. The Scientific Advisory Board of CMI selected these problems, P ws NP

focusing on important classic questions that have resisted solution over the r Poincaré Conjecture
years. The Board of Directors of CMI designated a $7 million prize fund for the + Riemann Hypothesis

solution to these problems, with $1 million allocated to each. During the » Yana-Mills Theory

Millennium Meeting held on May 24, 2000 at the Collége de France, Timothy
Gowers presented a lecture entitled The Importance of Mathematics, aimed for + Rules

the general public, while John Tate and Michael Ativah spoke on the problems. F Millennium Meeting Videos

The CMI invited specialists to formulate each problem.




Market for P=NP or P=NP proven by 2010

Price Plot for life of PINP
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Possible relevance of renormalization group
approach to characterizing P (problems that
can be solved in polynomial time)

P is not a phase, but it is reasonable to conjecture that
functions in P are either in or close to non-generic phases

all Boolean functions
2x; mod 3
/ majority
— /

e o

low order functions in P that
polynomials are close to low

order polynomials




Efficiently computable functions and phases
do not coincide

* There are any more low-order polynomials (with
order less than NX with x<1) than there are
efficiently computable functions

* A polynomial with a few terms of all orders up to
N is efficiently computable, and appears to be in
generic phase (but there is a non-generic
function that yields the same output for all but a
small fraction of input configurations)



Intuition underlying conjecture that efficiently
computable functions are close to
nongeneric phases

Typical functions yield nonzero output on very close to half
their input configurations

Low order polynomials yield nonzero output on a significant
fraction of their input configurations, but are nongeneric
functions

Products of O(N) variables yield nonzero output on an
exponentially small fraction of input configurations

Efficiently computable combinations of products and sums
that result in functions that yield nonzero input on
significant fraction of input configurations exist —
conjecture is that restrictions on the combinations leads to
resulting function being non-generic (true for examples
such as MAJORITY, DIVISIBILITY MOD 3)



A big question

 |s it possible to prove that all functions in P are
IN or near non-generic phases?



Summary

* A renormalization group (RG) approach similar
to the one used to characterize phase transitions
iIn condensed matter systems can be used to
classify Boolean functions.

— RG identifies functions in a generic phase

— RG identifies some functions that are in non-generic
phases

— P is not a phase, but it is a plausible conjecture that
functions in P are either in or close to non-generic
regions of the phase diagram.



